Search results for "Peritrophic matrix"

showing 6 items of 6 documents

The cotton stainer's gut microbiota suppresses infection of a cotransmitted trypanosomatid parasite

2018

The evolutionary and ecological success of many insects is attributed to mutualistic partnerships with bacteria that confer hosts with novel traits including food digestion, nutrient supplementation, detoxification of harmful compounds and defence against natural enemies. Dysdercus fasciatus firebugs (Hemiptera: Pyrrhocoridae), commonly known as cotton stainers, possess a simple but distinctive gut bacterial community including B vitamin-supplementing Coriobacteriaceae symbionts. In addition, their guts are often infested with the intestinal trypanosomatid parasite Leptomonas pyrrhocoris (Kinetoplastida: Trypanosomatidae). In this study, using experimental bioassays and fluorescence in situ…

0301 basic medicineInnate immune systembiologyPyrrhocoridaeZoologyGut floraPyrrhocorisbiology.organism_classification03 medical and health sciences030104 developmental biologyGeneticsParasite hostingPeritrophic matrixEcology Evolution Behavior and SystematicsBacteriaSymbiotic bacteriaMolecular Ecology
researchProduct

Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed.

2010

Given the high similarity in genome content and organization between Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Agrotis segetum nucleopolyhedrovirus (AgseNPV), as well as the high percentages of similarity found between their 30 core genes, the specificity of these NPVs was analysed for the respective insect hosts, S. exigua and A. segetum. The LD(50) for AgseNPV in second-instar A. segetum larvae was 83 occlusion bodies per larva and the LT(50) was 8.1 days. AgseNPV was orally infectious for S. exigua, but the LD(50) was 10 000-fold higher than for SeMNPV. SeMNPV was not infectious for A. segetum larvae when administered orally, but an infection was established by injecti…

BaculoviridaeLaboratory of VirologyMothsSpodopterain-vivoheliothis-virescens larvaeLaboratorium voor VirologiebaculovirusBeet armywormVirologyExiguaparasitic diseasescalifornica-m-nucleopolyhedrovirusAnimalsPeritrophic matrixRNA MessengerLarvabiologyReverse Transcriptase Polymerase Chain ReactionfungiNuclear Polyhedrosis VirusMidgutocclusion-derived virusbiology.organism_classificationPE&RCVirologyNucleopolyhedrovirusesperitrophic matrixIntestinesAutographa californicacell-linesbeet armywormautographa-californicanuclear polyhedrosis-virusLarvaThe Journal of general virology
researchProduct

Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment

2021

Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse’s ability to transmit trypanosomes by strengthening the fly’s natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse’s PM in order to establish an infection in the fly, and PM struc…

PhysiologyGenes InsectBiochemistryAnimals Genetically ModifiedMedical ConditionsGene expressionMedicine and Health SciencesHomeostasisPeritrophic matrixBiology (General)Protozoans0303 health sciencesbiologyGene OntologiesSodalis glossinidiusEukaryotaCardiaGenomicsBody FluidsCell biologyIntestinesNucleic acidsBloodDigestionAnatomyResearch ArticleSymbiotic bacteriaTrypanosomaTsetse FliesQH301-705.5ImmunologyParatransgenesisMicrobiology03 medical and health sciencesVirologyParasitic DiseasesGeneticsAnimalsNon-coding RNAMolecular Biology030304 developmental biologyNatural antisense transcripts030306 microbiologyfungiOrganismsBiology and Life SciencesComputational BiologyTsetse flyMidgutRC581-607Genome Analysisbiology.organism_classificationParasitic ProtozoansGastrointestinal MicrobiomeInsect VectorsGene regulationGastrointestinal TractMicroRNAsTrypanosomiasis AfricanTrypanosomaRNAParasitologyGene expressionImmunologic diseases. AllergyPhysiological ProcessesDigestive SystemPLOS Pathogens
researchProduct

Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees

2014

Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a mo…

Veterinary MicrobiologyChitinPathogenesisPathology and Laboratory MedicineVirulence factorchemistry.chemical_compoundMedicine and Health SciencesPeritrophic matrixlcsh:QH301-705.5biologyVirulenceGram Positive BacteriaBeesVeterinary BacteriologyBacterial PathogensVeterinary DiseasesMedical MicrobiologyLarvaHost-Pathogen InteractionsPaenibacillusResearch Articlelcsh:Immunologic diseases. Allergy570American foulbroodVirulence FactorsImmunologyMolecular Sequence DataVirulenceMicrobiologyMicrobiologyChitinBacterial ProteinsVirologyGeneticsAnimalsAmino Acid SequenceMolecular BiologyMicrobial PathogensGram-Positive Bacterial InfectionsSequence Homology Amino AcidfungiBiology and Life SciencesMidgutBacteriologyHoney beebiology.organism_classificationlcsh:Biology (General)chemistryProteolysisParasitologyVeterinary Sciencelcsh:RC581-607BacteriaPLoS Pathogens
researchProduct

Paratransgenic manipulation of tsetsemiR275alters the physiological homeostasis of the fly’s midgut environment

2021

AbstractTsetse flies are vectors of parasitic African trypanosomes (Trypanosomaspp.). Current disease control methods include fly-repelling pesticides, trapping flies, and chemotherapeutic treatment of infected people. Inhibiting tsetse’s ability to transmit trypanosomes by strengthening the fly’s natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines tsetse’s midgut. It protects the epithelial cells from the gut lumen content such as food and invading trypanosomes, which have to overcome this physical barrier to establish an infection. Bloodstream form trypanosomes shed variant surface glycopr…

biologyfungiSodalis glossinidiusTrypanosomaTsetse flyParatransgenesisMidgutPeritrophic matrixbiology.organism_classificationMicrobiologySymbiotic bacteriaGenetically modified organism
researchProduct

Chitin: A Structural Biopolysaccharide with Multiple Applications

2014

Chitin is a naturally occurring fibre-forming polymer that plays a protective role in many lower eukaryotes similar to that of cellulose in plants. Chemically it is a long-chain unbranched polysaccharide made of N-acetylglucosamine residues linked through β-1,4 covalent bonds; it is the second most abundant organic compound in nature, after cellulose. Taking into account the role played by chitin in different biological structures (i.e. fungal cell walls, insect peritrophic matrix, insect and crustacean cuticles, eggshells from nematodes, cyst wall of protozoa), its metabolism (biosynthesis and degradation) is essential for different morphogenetic events. Absent in vertebrates and plants, c…

chemistry.chemical_classificationbiologyfungimacromolecular substancesChitin synthasePolysaccharidecarbohydrates (lipids)Cell wallChitosanchemistry.chemical_compoundChitinchemistryBiochemistryChitinasebiology.proteinChitin nanofibrilPeritrophic matrixeLS
researchProduct